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Abstract. We introduce some sufficient conditions under which a generalized linear complementarity 
problem (GLCP) can be solved as a pure linear complementarity problem. We also establish that the 
GLCP is in general a NP-Hard problem. 
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1. Introduction 

In this paper we consider a generalized linear complementarity problem (GLCP) 
that consists of finding vectors u, v, z and y such that 

u =p + Mz + Ny 

v = q  + Rz + Sy 

urz = 0 ,  u ,v , z , y>~O,  

where u, z, p E •", y E R",  v, q E R l, n •  M ~ R  , NER"• R E R  txn and S E  

R ~x". This problem is a generalization of the well-known linear complementarity 
problem (LCP) 

w = q + M z ,  w , z ~ O ,  w r z = O ,  (1) 

where M is a square matrix of order n and w, z, q E R". We recommend [2] for 
excellent discussions of the LCP. 

The GLCP has found important applications in the solution of some global 
optimization problems by sequential techniques [4]. This problem has been 
mentioned in [9], where it is shown that it can be reduced to a concave nonlinear 
minimization problem. The existence of variables y and v without complementary 
makes this problem much harder to solve than the LCP. It is well known that if M 
is a positive semi-definite matrix, then the LCP can be solved in polynomial time 
[7]. However, we establish that the GLCP is NP-Hard even when M satisfies this 
property. 

In this paper we discuss the solution of this problem by exploiting its reduction 
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to the LCP. The first approach exploits the equivalence between the GLCP and a 
nonconvex quadratic program. As in [3], we establish a sufficient condition for a 
stationary point of the associated quadratic program to be a solution of the 
GLCP. The problem of finding such a point is in turn a LCP of the form (1). We 
also consider another reduction to a LCP of the form (1) under special properties 
of the matrices M, N, R and S and the  vector q, 

The organization of this paper is as follows. In Section 2 and 3 we establish the 
two existence results for this GLCP. The complexity result for the GLCP is 
proved in Section 4. Finally, some concluding remarks are presented in the last 
section of this paper. 

2. Sufficient Matrices for the GLCP 

In this section the following result given in [3] for the LCP is extended for the 
GLCP. 

T H E O R E M  1. I f  M is a row sufficient matrix, then the following condition holds 
�9 if (s f~) is a KKT point o f  the quadratic program 

1 r 
min ~ z  (M + M r ) z  

subject to Mz >- - q  

z~>0 

where ~ are the multipliers associated with the constraints Mz >I - q ,  then ~ is a 
solution of  the LCP. 

The GLCP can be posed as a nonconvex quadratic minimization program 

min uT"z 
U,O,z,y 

subject to u = p + M z + N y  

v =q  + Rz + Sy 

u , v , z ,  y>~O. 

We reformulate this program in its standard form 

min l[z]r[ M+M'Nr ,~, 
z,y "-2 y y L0J [yJ 

subjectto [M sN][y]~>[ -p]  (3) 

z, y I> 0. (4) 

A point (~, y,/Zl,/7~) is called a Karush-Kuhn-Tucker (KKT) point of the 
program (2)-(4) if it satisfies (3) and (4) and 
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[y] 

Z r -,,',+,,',~ oN][y]_[M; 

NT o N ] [ ; ] - [ N T  S r ] [ ~ ] ) = O  (6) 

/Xl r p 
I/x2 ] ( [ q ] + [ M  s N ] [ ; ] ) = 0  (7) 

z, y,/-h,/x2~>0 

where ~/1 ~ t n  and/.t 2 E l*. 
In order to establish the main result of this section we require the following 

definition. 

DEFINITION 1 [3]. A matrix Z E t k xk  is said to be column sufficient if it 
satisfies the implication 

xi(Zx)~ <- 0 for all i E { 1 , . . . ,  k} ~xi (Zx) i  = 0 for all i E { 1 , . . . ,  k} .  

The matrix Z is row sufficient if its transpose is column sufficient and is sufficient 
if it is both column and row sufficient. 

The following proposition is stated in [2] and is used to establish our results. 

PROPOSITION 1. I f  Z ~ t k• is a row sufficient matrix, then 
(i) all principal submatrices of  Z are row sufficient 
(ii) if  i, ] E {1 . . . .  , k} and i # ]  then 

(z,  = 0 and zji >>- O) ~ z u <~ O . 

As in [3], we investigate when a KKT point of the nonconvex quadratic program 
(2)-(4) is a solution of the GLCP. The following theorem provides a sufficient 
condition for this question. 

T H E O R E M  2. I f  

w=[ M ~ R(o+o• 
is a row sufficient matrix, then the following condition holds 
�9 if  (~, y, gl,  ft.2) is a KKTpoin t  o f  the quadraticprogram (2)-(4) then (~, y-) is a 

solution o f  the GLCP. 
Proof. Since (~,)7, ill, fi~) is a KKT point, then by (6) we have 

5r(p + M]. + Ny) + 5T(MrZ - M T ~ I  -- RT~j-,2) = 0 (8) 

which by the feasibility constraints (3) and (4) implies 
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s - M r f i l - R T ; : ) i ~ 0 ,  i =  l , . . . , n .  (9) 

On the other hand, multiplying each of the first n rows of (5) by the 
correspondent components of ;1, we get 

(;1)~(P + M]. + Ny-)i + ( ;1)~(Mr; / -  M T ; ,  - Rrfi-2)~ t> 0,  i = 1 , . . . ,  n .  

But from (7), we have 

- ( ; , ) , ( M T S - M T ; , - R r f i 2 ) , < - O ,  i =  l , . . . , n .  (10) 

Adding the two sets of inequalities (9) and (10) we obtain 

2i(Mrz-)~ + ( ; , ) , ( M T ; , ) i -  ~.,(M;,), 

- ( ; , ) i ( M r Z - ) i -  ~.i(Rr;2)i + ( fh)i(Rrf i2)i  <-0, i = 1 , . . . ,  n 

or by using matrix notation 

( [~-  ;,1~ (I -Mr RTll '~- ;'1"/ 
L - ; 2  J/AL 0 0 JL --fiE j / ~ < 0 ,  i = l , . . .  , n + l .  (11) 

By assumption W T is a column sufficient matrix and the n + l inequalities (11) 
and consequently the n inequalities (9) turn into equalities. Hence it follows by 
(8) that 

5T(p + M]. + Ny-) = 0 

and this proves the theorem. [] 

Ye [10] has proved, using a different framework, that the generalized linear 
complementarity problem 

A x + B y + C z = q ,  x , y , z ~ O ,  x r y = 0  (12) 

can be solved in polynomial time provided B A  r is a negative semi-definite matrix. 
It is a simple matter t o  see that the GLCP is a particular case of (12) where 
B A  T = - W .  According to Ye's result, the GLCP can be solved in polynomial time 
provided W is a positive semi-definite matrix. Furthermore, in this last case W is 
row sufficient and we may solve the GLCP by computing a KKT point of the 
program (2)-(4). 

Theorem 2 provides a sufficient condition that is not necessary. To show this, 
we introduce the following GLCP 

= [Oo]_,_ ' < ' ,  

,.,=Eoj-,-r, o-,[;:]+i-11, ,:-;> 
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Ul, U2, /3, Zl ,  Z2, y >10 

U l Z  1 = U 2 Z  2 = 0 .  (15) 

It is a simple matter to see that the set defined by the linear constraints (13), (14) 
and (15) is 

{(u~, 0, 0, 0, u~, 0), ul ~> 0} 

and urz  = 0 for all the points of this set. Thus all the feasible points of the 
associated quadratic program are stationary points and solutions of the GLCP. 
However,  the matrix 

W =  - 1  0 
1 0 

is not row sufficient, by Proposition 1 (ii). 
As is discussed in [5], there exist some important global optimization problems 

leading to a GLCP in which the matrix M is positive semi-definite. If the GLCP 
does not contain any variables y, then it can be written in the following form 

1 r $ z  (M + M )z + 
subject to p + M z  >I 0 

q + R z > ~ O  

z ~ O .  

Hence the GLCP reduces to a convex quadratic program and can be solved in 
polynomial time. The same result holds if the GLCP contains some variables y 
and R = 0, since it is positive semi-definite the matrix W stated before. Next we 
establish the following result. 

T H E O R E M  3. f f  the matrix M is row sufficient then W is row sufficient i f  and only 
i f R = O .  

Proof. (i) If R = 0 and M is row sufficient, it is obvious that W is row sufficient. 
(ii) Suppose now that W is row sufficient. Then R ~< 0 by Proposition 1 (ii). If 

R ~ 0, then there must exist at least one element rij of R such that r/j < 0. From 
Proposition 1 (i) the matrix 

mjj 00 ] 
rq 

must be row sufficient. Hence 

z l (mjjz  1 -I- rijz2) < 0 (16) 

has to hold for all values of z 1 and z 2. However, by choosing z 1 > 0  and 
z 2 >t -(mjjz2)/(r~izl)  the condition (16) is violated and this completes the proof. [] 

By this theorem, if the GLCP contains some variables y and R ~ 0 there is no 
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guarantee that a KKT point of the program (2) - (4 )  is a solution of the GLCP, 
even when M is a positive semi-definite matrix. So the GLCP seems to be much 
more difficult to solve in this case. The complexity of this GLCP will be discussed 
in Section 4. 

3. Reduction into a Pure Linear Complementarity Problem 

In this section we consider a GLCP in which N has at least a column, M is 
positive semi-definite and R contains a unique nonzero row. Hence the GLCP 
takes the form 

u = p  + M z + N y  

v = q  + S y  

wo = A + rrz  + sry  

u r z = o ,  u,V,  Wo, Z,y>~O 

where r E N n , s ~ R m ,  Wo, A E R  and M is a positive semi-definite matrix. We 
denote this generalized linear complementarity problem by GLCP1. 

Let  K be the set defined by 

K =  {(z, y): p + M z  + N y ~ O ,  q + Sy>-O,z ,  y~>0}.  (17) 

Let  N i be the i-th column of N and assume that the linear programs 

h i =  max N f z ,  i i = l , . . . , r n  
(z,y)EK 

have optimal solutions. Let  h be the vector whose components are h i and consider 
the following linear complementarity problem (LCP1) 

u = p  + M z  + Ny  - rico (18) 

~7 = h - N r z  - Silo - SrO (19) 

u = q + Sy (20) 

w 0 = A+ rrz  + s t y  (21) 

u, z, ~, y, v, 0, w0,/% I> 0 

urz  = rlr y = vrO = w0/% = 0 .  (22) 

Since M is a positive semi-definite matrix, then the matrix of this LCP1 also 
shares this property and this problem can be solved in polynomial time [7]. The 
next theorem provides a sufficient condition for which processing the LCP1 (find 
a solution or show that no solution exists) enables us to find a solution of the 
GLCP1 or to show that none exists. 
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T H E O R E M  4. (i) I f  the LCP1 has no solution then the GLCP1 is infeasible. 
(ii) Suppose that q ~ O  and max(y.z)Er_(o)Sry <0 .  I f  (t2, ~, ~, )7, 6, /~, ifo, /Xo) 

is a solution of  LCP1 and ~ ~ 0, then ( ~, 6, Z, ~, if o) is a solution o f  the 
GLCP1. 

Proof. (i) If the LCP1 has no solution then the set defined by its linear 
constraints (18)-(22) is empty [2]. Consequently this set is also empty for/z 0 = 0 
and 0 = 0. Since N~<0, then the set defined by the linear equations (18), (20), 
(21) and (22) is empty and the GLCP1 is infeasible. 

(ii) If/~0 = 0 the result follows immediately. Now suppose that tZo > 0. By the 
complementarity conditions we have ifo = 0, which implies 

O = A + r T ~ + s T f i .  

On the other hand by (18), (19) and (20) the following conditions hold 

0 = ~r~ = p r Z +  ;?rM~ + ~TN)7 _/2orr~ 

0 = ; r ~  = hry  _ y r N s  fioSTy _ )yrSr ~ 

O= Or6=qrO + OrSy. (23) 

Adding term by term these inequalities we get 

pry. + hr]~rMy. _ fq(rry. + jy-)  + qr~ = 0 

which by (23) is equivalent to 

(_h  T + Urz-)rf  = __~l, oST~ .~_ qTy .  

Since q/> 0 and s t y  < 0, it is impossible to hold this inequality. Then/20 = 0 and 
(~, 6, ~?, ]7, if0) is a solution of the GLCP1. [] 

This theorem provides a sufficient condition for a GLCP in which N has at least a 
column, M is positive semi-definite and R contains a unique nonzero row to be 
solved in polynomial time. In particular a GLCP of this form can be solved in 
polynomial time if q >/0, N ~< 0, s < 0 and the solution of the LCP1 satisfies )7# 0. 

Consider again the GLCP1 and assume that the hypotheses of Theorem 4(ii) 
hold. Furthermore let 

K 1 = { z  E ~n Mz >I - p ,  rrz >I -A} . 

If K 1 ~ O, a solution of the GLCP1 can be found by setting y = 0 and solving the 
following quadratic program 

1 
min prz  + ~ z  (M + M r ) z .  
z E K  1 

Now suppose that K 1 = 0 and consider the linear program 
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min 
z,O,lx 0 

subject to M z  - rl% >I - p  

N r  z + Sl% + SrO >I - h  

rTz >I - A  

z , O , ~ > - O .  

Since K 1 = 0, there are only two possible cases that are discussed below. 
(i) 

(ii) 

(24) 

ff  the linear program (24) is infeasible then either the LCP1 is infeasible, and 
the same occurs with the GLCP1, or the LCP1 must have a solution with 
)7 ~ 0 and a solution of the GLCP1 is at hand, by Theorem 4(ii). 
If the linear program (24) has an optimal solution (~, t.Zo, 0) with /~0 > 0, 
then z = ~?, /z 0 = t20, 0 = 0 and )7 = 0 satisfy the linear constraints of the 
LCP1. Since this LCP1 is monotone it must have at least a solution [2]. But y 
may be zero in all the solutions of the LCP1 and no conclusion may be stated 
about the existence of a solution to the GLCP1 in this case. 

The preceding discussions indicates that the existence of a solution to the 
GLCP1 may be quite a hard problem even in the presence of the hypotheses of 
Theorem 4(ii). The situation is even worse when these hypotheses no longer hold. 
In the next section we show that the GLCP1 is in general a NP-Hard problem. 

4. Complexity of the GLCP 

It is well known that the LCP is in general a NP-Hard problem [1]. Despite this, 
there exist some classes of matrices for which the LCP can be solved in 
polynomial time ([2], [11]). In particular, a LCP with a positive semi-definite 
matrix M can be solved in polynomial time [7]. Since the LCP is a special case of 
the GLCP, then this latter problem is in general NP-Hard. In this section we show 
that the GLCP remains NP-Hard when its matrix M is positive semi-definite. As 
in [1] we use the subset sum problem. 

�9 given n + 1 positive integers a l , . . . ,  a n and b, does Xi"__ 1 aixi = a r x  = b have 
an 0-1 solution? 

Karp [6] has proved that this problem is NP-Complete. The subset sum 
problem can be seen as the problem of finding a feasible solution for the knapsack 
problem. This is in turn equivalent to check if the following concave quadratic 
program 

min 
x 

subject to 

x r ( e  - x)  

a r x  = b (25) 

O<~x<~e 

has a global solution with zero value. Now we are able to prove the following 
theorem. 
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T H E O R E M  5. If  M is a positive semi-definite matrix then the GLCP is a 
NP-Hard problem. 

Proof. Consider the concave quadratic program (25). This problem equivalent 
to the bilinear program [8] 

1 r 1 m!n -~ e x + xr( - I )y  +-~ ery 

subject to arx<-b,-arx<--b,O<-x<-e 

ary <.b, - a  ry<~ -b ,  O<~ y <.e 

which in turn is equivalent to the following problem [5] 

rain t + ~ e  y 

F el L o a [i j subject to = + a r 0 

- I  0 

[a;] y =  _ r y 

a 0 OilI  x 
0 t + Y 

0 

a,/3, y, x, y, t, w o/> 0 

a~x =/3~t= o. 

(26) 

(27) 

(28) 

Hence, finding a global solution with zero value of the quadratic program (25) 
reduces to solve the GLCP consisting of the constraints (26), (27) and (28) and 

w o = -  t - ~ e  y ,  w oI>0. (29) 

Hence the subset sum problem is equivalent to the GLCP (26), (27), (28) and 
(29). Therefore a GLCP with a positive semi-definite matrix M and R ~ 0 is a 
NP-Hard problem. [] 

5. Concluding Remarks 

In this paper we have studied a generalized LCP (GLCP) that appears often in 
global optimization. We have shown that this problem is in general NP-Hard. We 
have also established two results that enable the solution of a generalized LCP as 
a pure linear complementarity problem of the form (1). We believe that these 
results may have some important applications in finding global solutions of some 
nonconvex optimization problems by the sequential LCP algorithm described in 
[4]. This will be a topic of our future research. 
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